Chandrayaan-3 Mission Components: Unlocking Lunar Mysteries

Chandrayaan-3, building upon Chandrayaan-2, aims to demonstrate advanced lunar exploration capabilities. Consisting of a Lander and Rover configuration, this mission endeavors to uncover the Moon’s secrets through scientific payloads and cutting-edge technology.

Lander Module:

  • The indigenous Lander module is the centerpiece of Chandrayaan-3.
  • Designed for soft landing, it carries scientific payloads to study lunar phenomena.
  • Propulsion Module (PM) carries the Lander and Rover configuration to a 100 km lunar orbit.
  • PM features the Spectro-polarimetry of Habitable Planet Earth (SHAPE) payload, analyzing Earth’s spectral and polarimetric measurements from lunar orbit.

Lander Payloads:

  • Chandra’s Surface Thermophysical Experiment (ChaSTE): Measures thermal conductivity and temperature.
  • Instrument for Lunar Seismic Activity (ILSA): Gauges seismicity around the landing site, probing lunar crust and mantle.
  • Langmuir Probe (LP): Estimates plasma density and variations.
  • Laser Retroreflector Array (LRA): NASA’s passive experiment for lunar laser ranging studies.

Rover Payloads:

  • Alpha Particle X-ray Spectrometer (APXS): Derives elemental composition of lunar soil and rocks.
  • Laser Induced Breakdown Spectroscope (LIBS): Provides insights into chemical and mineral composition near the landing site.

Advanced Technologies and Objectives:

  • Chandrayaan-3 aims to demonstrate advanced technologies for interplanetary missions.
  • Lander employs altimeters, velocimeters, inertial measurement, propulsion systems, navigation, and hazard detection for safe landing.
  • Mission objectives encompass safe landing, rover mobility, and in-situ scientific experiments.

Mission Specifications:

  • Chandrayaan-3’s mass is 3900 kg, with Propulsion Module at 2148 kg and Lander Module at 1752 kg.
  • Power generation ranges from 50W (Rover) to 758W (Propulsion Module).
  • Communication involves IDSN links for Propulsion Module and Lander, with contingency link to Chandrayaan-2 Orbiter.

Scientific Payloads Significance:

  • Lander payloads study lunar plasma, thermal properties, seismic activity, and cosmic dynamics.
  • Rover payloads unravel elemental and mineral composition, enriching lunar geological knowledge.
  • Chandrayaan-3 contributes to exploring lunar history, Solar System evolution, and potential for future lunar bases.

More Sci-Tech News Here

Piyush Shukla

Recent Posts

Weekly Current Affairs One Liners 08th to 14th December 2025

Weekly Current Affairs One-Liners Current Affairs 2025 plays a very important role in the competitive…

8 hours ago

Which Indian City is Known as the Footwear City?

India has many cities that are famous for their unique industries, and some of them…

1 day ago

Which Desert is known as the Cold Desert?

Some deserts are extremely hot, but some remain cold throughout the year. These cold deserts…

1 day ago

Top-10 News Media Companies in the World, Check the List

In today’s world, news media plays a very important role in sharing information quickly and…

1 day ago

PNB Housing Finance Appoints Ajai Kumar Shukla as New MD & CEO

PNB Housing Finance has announced the appointment of Ajai Kumar Shukla as its new Managing…

1 day ago

Department of Posts and BSE Sign MoU to Expand Mutual Fund Access Across India

In a major push towards deepening financial inclusion, the Department of Posts (DoP) and BSE,…

1 day ago